Consider the following recurrence relation:
𝑇(𝑛) = 2𝑇(𝑛 − 1) + 𝑛2n for 𝑛 > 0, 𝑇(0) = 1.
Which ONE of the following options is CORRECT?
A.
T(n) = Θ(n² · 2ⁿ)
B.
T(n) = Θ(n²ⁿ)
C.
T(n) = Θ((log n)² · 2ⁿ)
D.
T(n) = Θ(4ⁿ)
Solution:
T(n) = 2T(n−1) + n.2n
= 2[2T(n−2) + (n−1) 2n-1]+n.2n
= 22T(n−2) + 2(n−1) 2n-1]+n 2n
= 2² · [2T(n−3) + (n−2)· 2ⁿ⁻²] + 2(n−1)· 2ⁿ⁻¹ + n· 2ⁿ
By observing, we can write
T(n) = 2ᵏ·T(n−k) + 2ⁱ·(n−i)·2ⁿ⁻ⁱ
[∵T(0) = 1 So k = n
T(n) = 2ⁿ · T(0) 2ⁱ · (n − i) · 2ⁿ⁻ⁱ
∴T(n) = 2n + (n − i) · 2ⁿ
= 2ⁿ + 2ⁿ · []
= Θ(n² · 2ⁿ)