The Lucas sequence Ln is defined by the recurrence relation:
Ln = Ln−1 + Ln−2, for n ≥ 3,

with L1 = 1 and L2 = 3.

Which one of the options given is TRUE?

A.

Ln = (1+52)n + (1-52)n

B.

Ln = (1+52)n - (1-53)n

C.

Ln = (1+52)n + (1-53)n

D.

Ln = (1+52)n - (1-52)n

Solution:

Ln = Ln−1 + Ln−2  (for n ≥ 3_

L1 = 1 and L2 = 3

Put n=1 in option A

L1 = (1+52)1 + (1-52)1

L1 = 1

Put n=2 in option A

L2 = (1+52)2 + (1-52)2

L2 = (1+5)2 + (1 -5)24

As we know, (a + b)2 + (a - b)2 = 2(a2 + b2)

L2 = 2(1+5)4

L2 = 3

Option A satisfies the condition, so the correct answer is Option A.